Ultrasensitive optical absorption in graphene based on bound states in the continuum
نویسندگان
چکیده
We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes. Based on such a bound state, we have realized strong optical absorption in the monolayer graphene. Such a strong optical absorption exhibits many advantages. It is ultrasensitive to the wavelength because the Q factor of the absorption peak can be more than 2000. By taking suitable BICs, the selective absorption for S and P waves has not only been realized, but also all-angle absorption for the S and P waves at the same time has been demonstrated. We have also found that ultrasensitive strong absorptions can appear at any wavelength from mid-infrared to far-infrared band. These phenomena are very beneficial to biosensing, perfect filters and waveguides.
منابع مشابه
Quantum modeling of light absorption in graphene based photo-transistors
Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...
متن کاملThermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...
متن کاملThermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...
متن کاملTunable Optical Excitations in Twisted Bilayer Graphene Form Strongly Bound Excitons.
When two sheets of graphene stack in a twisted bilayer graphene (tBLG) configuration, the resulting constrained overlap between interplanar 2p orbitals produce angle-tunable electronic absorption resonances. By applying a novel combination of multiphoton transient absorption (TA) microscopy and TEM, we resolve the electronic structure and ensuing relaxation by probing resonant excitations of si...
متن کاملNonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics
The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...
متن کامل